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SOLUTION OF THE TWO-DIMENSIONAL INVERSE HEAT-CONDUCTION 

PROBLEM IN A CYLINDRICAL COORDINATE SYSTEM 

N. V. Kerov UDC 536.24 

The two-dimensional inverse heat-conduction problem is considered. An algorithm of 
the solution and the results of a trial computation are presented. 

Modern thermophysical investigation methods, thermal design, and experimental checkout 
of thermally stressed systems utilize the principles of inverse problems extensively, which 
have been recommended well in recent years. The high efficiency of methods to investigate 
heat-transfer processes which are based on the solution of inverse problems, especially in 
combination with the automated collection and processing of results, resulted in the develop- 
ment of inverse problems in an independent scientific aspect [I]. 

Different formulations of inverse heat-conduction problems (IHCP) exist at this time. 
Depending on the purpose, linear and nonlinear IHCP are utilized. Here one-dimensional 
heat-conduction models are mainly considered. 

The selection of the one-dimensional models is based on those cases when a hypothesis 
on one-dimensional heating canbe taken. This hypothesis is valid for many heat-protection 
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coating structures. Thus, for instance, one-dimensional models are recommended well for the 
investigation of the thermal state of structures with small thicknesses and large radii of 
curvature. Constructive solutions affording the possibility of taking a one-dimensional heat- 
ing hypothesis are attempted in the development of heat-flux sensors also. Nevertheless, the 
application of materials with elevated heat conductivity in modern engineering and the 
necessity of using design solutions resulting in the creation of heat shielding structures 
with small radii of curvature require taking account of a two-dimensional heat-conduction 
model in determining external thermal loading conditions, especially in those cases when 
there is no possibility of mounting special heat flux sensors utilizing the one-dimensional 
heat-conduction model. An example of such a structure is a cylindrical shell of small ra- 
dius. It is noted in [2] that not taking account of the curvature in this case can result 
in errors of up to 100% and more in a computation of the temperature field. It should be 
noted that the nonstationary nature of the heat flux (along the generator of the thermally 
loaded surface) and the high heat conductivity of certain structural materials [3] in addi- 
tion to the curvature of the outer surface of the structure under consideration exert in- 
fluence on the two-dimensional temperature field distribution. 

A two-dimensional inverse boundary-value problem of heat conduction is examined in this 
paper, which will permit restoration of the space--time pattern of the external thermal 
loading with the two-dimensional model of heat conduction taken into account. The problem 
is solved in a cylindrical coordinate system (Fig. i). 

Physically, such a formulation results in the following. A number of thermocouples 
are mounted on the inner surface of the body (r = Rin) of cylindrical shape or of the 

appropriate sensor of the heat-flux transducer. The heat flux delivered to the outer surface 
(r = R) is restored according to the temperatures recorded by using these thermocouples. 

Let us consider an algorithm for the iteration solution of the proposed two-dimensional 
IHCP: 

OT / OZT 1 OT 1 02T "~ 
-- a i + - -  - - - +  ), 01; \ c]r z r Or r 2 O(p z 

R i n ~ r < R ,  0 ~ 9 ~ % . ,  O<:x~-c~, T(r ,  ~, O)=~(r, {p), 

OT (r, O, T )  a T ( r ,  % .  T) aT  (/~.n % "r) 
~ -  ~= ' ~ O, 

8~ &p Or 

T(R~., % ~)= f(% "0. 

(1) 

(2) 

(3) 

(4) 

It is determined in the solution of the problem that 

ql(q), T ) = -  s aT(R, q), T) (5) 
Or 

The problem (1)-(5) is solved as an optimal control problem: 

P(% ~)_ q(m, ,) (6) 

The control is selected from the condition of consistency of the given temperature 

r)with thetemperature T(Rin , ~, z) obtained for the control selected. The rms residual f(~, 

~d~ f f (7) 
0 0 

is considered as the measure of deviation. 

In their physical substance, inverse problems are unstable. To obtain a stable IHCP 
solution we use the regularizing properties of the heat-conduction process and the calcula- 
tional algorithm 

ph+~(% ~)=ph(~, ~)+Apk(% ~), ~ = 0 ,  1 . . . . .  (8) 

1246 
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Fig. I. Domain of the solution of a two- 
dimensional inverse heat-conduction prob- 
lem. 

I 

0 2 4 ,  6 8 

Fig. 2. Results of solving an IHCP with exact 
initial data: a) model values q1(~, T); b) 
solutions of IHCP; i) ~ = 90; 2) 67.5; 3) 45; 
4) 22.5~ 5) ~ = 0). T, sec. 

where Apk(% T) is the correction to each iteration calculated from the condition 

[ ( p h + l ) < I ( P h )  . (9) 

Numerical optimization that relies on the method of conjugate gradients is used in solving 
the IHCP. Among the functions given on the segment [0, T m] the one is sought on which the 

functional (7) will achieve a minimal value [i]. 

We write the increment of the functional along P(% T) thus: 

m ~ h 

Az(P)_~2J d~j AT(Rm, ?, ~)[T(R w %'9- - f (% ~)]d% (10) 
0 0 

where the increment AT(Rin,~ , T) satisfies the boundary-value problem conditions 

OAT / 02AT ~ 1 (9AT 
- - a  ~ q - - - -  

Oz Or z r Or 

1 OZAT \ 
�9 + ~, (ii) 

r 2 &~2 / 

OAT(Rm, % T) 
& 

AT(r, q), O)=-O, 

OAT(r, O, ~) OAT(r, (h, ~) 

&p 07 

OAT(R, % ~) : A p ( %  ~). 
Or 

- -  =0, 

(12) 

(13) 

(14) 
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Fig. 3. Results of solving the IHCP for per- 
turbed initial data (AFo : 2, the perturbation 
is ~ = 5% of Tmax): a) model values q~(~, 7); 

b) IHCP solution; c) exact initial data; d) 

perturbed initial data; i) = 90; 2) 45; 3) 0 ~ 

q in kW/m ~, T in ~ and 7, sec. 
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Fig. 4. Results of solving the IHCP for per- 
turbed initial data (AFo = 0.02, the perturba- 
tion is ~ = 5% of Tmax): a) model values 

q~(@, T); b) IHCPsolution; i) ~ = 90; 2) 45; 
3) 0 ~ . 

To determine the gradient of functional I'(P), we solve the conjugate problem [2]. 
iteration spacing 8 is selected from the condition 

aI (P~+~(% 7)) =0, 
@ 

The 

(15) 

where pk+i (q, m) = ph(~, T)-- ~h(% T), ~(% 7) is the direction. 

Finally, we find the increment function as 

Apk+l --__l,h+l + ?hAPk,  (16) 

where ? = (l'h+l ; I'~+i)/(Ii h, I "~) �9 

Consequently, to determine the next approximation, three problems must be solved: by 
assumption T(r, ~,~), AT(r, ~,7) and the conjugate. They are all solved numerically. 

A special investigation was performed to determine the efficiency of the algorithm. 
The stability of the heat-flux iteration refinement process q(~, r) and the capacity of the 
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algorithm to restore the boundary conditions of a complex structure were verified. 

Certain results of these investigations are represented in Figs. 2, 3, 4. A model for 
heating a copper cylindrical shell was used in the computations. It was assumed that the 
shell was heat insulated from the inside. The model heat flux was delivered to the outer 
surface. Nonstationary heat flux in both time and space (along the generator of the outer 
surface) was considered. The model external heat flux in sections along the space coordi- 
nate ~ = O; 22.5; ...; 180 ~ is represented in Fig. 2. The temperature field was computed 
for a given heat flux and the temperature was determined on the shell inner surface. The 
temperature obtained in this manner was perturbed by using a pseudorandom number transducer 
(Fig. 3) and was used as initial data for the solution of the inverse problem. 

The results of investigations showed that in the case of unperturbed initial data, the 
inverse problem considered affords the possibility of restoring values of the nonstationary 
heat flux close to the model values (Fig. 2). Nearby approximations to the model heat flux 
were obtained also when using perturbed values of the temperature (Figs. 3 and 4) as initial 
data. The computations were performed here for different values of WFo -- 2; 0.2; 0.02. 

NOTATION 

q, heat-flux density; 0, r, ~, polar coordinate system; R, Rin , radii of the outer and 

inner cylindrical shell surfaces; ~k' greatest value of the variable ~; T, temperature; %, a, 

heat-conduction and thermal diffusivity coefficients; T, time; Tm, greatest value of the 

variable T; I, rms functional; f(~. T), temperature on the inner surface; P, a control; AT, 

a temperature increment; ~, direction of descent; B, depth of descent; AFo, Fourier number 
spacing. 

1. 

2. 
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